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Abstract7

Transportation is one of the primary contributors to local pollution stocks and flows. This pa-8

per considers how the structure of local road networks and the accompanying vehicular emissions9

might affect pollution stocks and flows. A pollution stock and flow model building on the Funda-10

mental Law of Road Congestion that considers the impact of road network structure is presented11

and used to generate hypotheses for how the structure of road networks should affect pollution12

stocks and flows. The main avenues for these effects are via traffic congestion and the opportunity13

cost of driving. Using topological indices to describe the structure of road networks, these hypothe-14

ses are tested using a Hausman-Taylor approach using a measure of urban form as an instrument to15

address the endogeneity of the network structure. Evidence is found supporting the hypotheses that16

better connected road networks, i.e., those with fewer bottlenecks and which generally allow for17

more efficient traversal, lead to lower levels of pollution stocks and flows. Evidence is also found18

that drivers adapt to more circuitous road networks with lower levels of driving. These mechanisms19

are confirmed by regressing measures of congestion and the opportunity cost of driving against the20

topological indices.21

Keywords: Air Pollution; Centrality; Congestion; Opportunity Cost of Driving; Particulate22

Matter; Road Network; Topological Index23



1 Introduction24

Air pollution is one of the most economically significant externalities facing the world today.25

Whether one considers global climate change, health outcomes, or productivity, the economic con-26

sequences of air pollution are extensive (Oswald and Stern, 2019). This is especially true in urban27

settings where dense populations live with some of the worst air quality (Liu et al., 2018).28

One of the largest emitters of pollutants, especially of acutely harmful pollutants, is the trans-29

portation sector (Kahn and Schwartz, 2008). Transportation accounts for approximately 30% of30

total greenhouse gas emissions in the United States (US) (Knittel, 2012). In Europe, transportation31

emissions contribute to as many as 400,000 premature deaths per year (Amato et al., 2014). Given32

these effects, a pressing concern of policy makers across the globe is to reduce vehicular emissions.33

One option policy makers have to address the pollution impacts from transportation, especially34

in rapidly growing regions, is strategic development of their local road network. The fundamental35

law of road congestion from Downs (1962) and confirmed by Duranton and Turner (2011) asserts36

that simply building more roads will not reduce emissions, and in fact should increase emissions37

because increases in lane miles will lead to an equiproportional increase in vehicle miles travelled,38

yielding constant levels of congestion. If we view vehicular emissions as a function of driving dura-39

tion and the instantaneous emissions over the duration of the trip (e.g., congestion), then increased40

vehicle miles travelled with unchanged congestion should lead to more pollution.41

However, Duranton and Turner (2011) did not consider that strategic placement of additional42

lane miles could potentially mitigate this effect. Local policy makers can create alternative routes43

which improve the connectivity of the road network and eliminate bottlenecks. While the existing44

literature on the fundamental law of road congestion makes it clear that adding additional lane miles45

to existing roadways will only increase vehicular emissions, building new roads to create these46

additional lane miles alters the structure of the local road network. This increases the connectivity47

of the local road network, and, in particular if newly constructed roads intersect with many existing48
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roads, offers a plethora of alternative routes. Traffic can then be dispersed across many routes rather49

than just one, thereby creating the potential for a reduction in congestion. Furthermore, new roads50

could offer more direct or more emissions-efficient routes.51

In light of these possibilities, this paper seeks to determine if the structure of a municipal road52

network affects local ambient air pollution levels. First, a theoretical application of the fundamental53

law of road congestion is developed to generate hypotheses on the impact of the structure of road54

networks on pollution stocks and flows through a simple theoretical application of the fundamental55

law of road congestion to a pollution stock and flow model. These hypotheses are then tested56

empirically using municipal level data on road networks in Virginia and ambient levels of the57

transportation-relevant air pollutant fine particulate matter (PM2.5). By considering a municipality58

as a set of road segments and intersections, the structure of the road network tells us about the59

nature of alternative routes/detours and thus the efficiency of driving with respect to vehicular60

emissions. Using a series of topological indices which describe specific aspects of the structure of61

road networks, and density as a measure of urban form as an instrument to address the potential62

endogeneity of the road network, an estimate of the effect of road network structure on ambient air63

pollution levels (stocks) will be obtained using a Hausman-Taylor instrumental variables approach.64

A first-differenced model using the same instrument is also used to estimate the effect of road65

network structure on vehicular emissions (flows). The results indicate that both stocks and flows66

of PM2.5 can be reduced through more efficient road network structures as characterized as being67

denser, and by having more robustly connected topologies. To verify that the mechanisms claimed68

to be responsible for this effect, namely congestion and the opportunity cost of driving, are indeed69

responsible for this improvement, measures of each of these mechanisms are regressed against the70

topological indices.71

This paper contributes to our understanding of the impact of road network structure on trans-72

portation related pollution and and provides policy solutions that can help to address several traffic73

related externalities. In doing so, this paper also provides evidence that road network structure74
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affects driving patterns through traffic congestion and the opportunity cost of driving. This means75

that the fundamental law of road congestion is not a general principle, i.e., the fundamental law76

of road congestion does not hold when additional highway lane miles are built in the form of new77

roads which increase the connectivity of the road network.78

2 Theoretical Framework79

Building upon the fundamental law of road congestion, we develop a theoretical framework related80

to pollution stocks and flows. We first model Ei,t which denotes the emissions of a given pollutant in81

municipality i at time t. Emissions sources are numerous, therefore we distinguish among sources82

of emissions (Si,t) across both municipalities/space (i) and time (t), each with its accompanying83

pollution intensity (ρs,i,t) which also varies across space and time. Since vehicular emissions are84

dependent upon driving, which is measured in vehicle miles travelled (V MTi,t), vehicular emissions85

are given by ρv,i,tV MTi,t . Thus, we obtain the following expression for total emissions.86

Ei,t = ρv,i,t ·V MTi,t + ∑
s6=v

(ρs,i,t ·Si,t) (1)

In other words, emissions from a single source are the product of the quantity consumed or87

produced of that emissions producing process, and Ei,t is simply the sum of emissions from all88

emissions sources.89

As emissions are flows of pollutants, pollution levels represent the pollution stocks. Given a90

pollutant decay rate δ , the pollution stock can be modelled as follows91

Pi,t = Ei,t +(1−δ )Pi,t−1 (2)

Rewriting Equation 2 purely in terms of emissions and differentiating between emissions from92

vehicles and emissions from other sources yields93
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Pi,T = ρv,i,t

T

∑
t=0

(1−δ )T−tV MTi,t + ∑
s6=v

ρs,i,t

T

∑
t=0

(1−δ )T−tSi,t (3)

Thus, the impact of V MTi,t on emissions flows and stocks, Ei,t and Pi,T , are given by Equations94

4 and 5, respectively.95

∂Ei,t

∂V MTi,t
= ρv,i,t (4)

∂Pi,T

∂V MTi,t
= ρv,i,t(1−δ )T−t (5)

This theoretical model suggests that ρv,i,t is critical to pollution dynamics in the model. Since96

we are interested in the effect o the structure of the road network, it is important that we include97

this in our theoretical model. Thus, to test this, we assume that the functional form of ρv,i,t and98

V MTi,t are given by the following two equations.99

ρv,i,t = ρv,i,t(Ti,t ,Ci(Ni)) (6)

V MTi,t =V MTi,t(Ci(Ni),θi,t(Ni)) (7)

where Ti,t denotes the level of vehicular pollution abatement technology (e.g., the age of cars, the100

distribution of electric v. gasoline v. diesel, etc.), Ni denotes the structure of the road network,101

Ci(Ni) denotes the level of traffic congestion across the road network, and θi,t(Ni) denotes the102

opportunity cost of driving.103

We can then look at the partial derivative of the road network on the pollution intensity of104

driving.105

∂ρv,i,t

∂Ni
=

∂ρv,i,t

∂Ci
· ∂Ci

∂Ni
(8)
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The first term on the right hand side of Equation 8 represents the marginal impact of congestion106

on the pollution intensity of driving and therefore should be positive; i.e., more congestion leads to107

more pollution per unit of driving. The second term on the right hand side represents the marginal108

impact of the road network on congestion. Ultimately the sign of this term will depend upon which109

aspect of the road network we choose to quantify, but for illustrative purposes, consider a measure110

of how connected the network is, where larger values indicate a better connected road network. In111

this case we should expect a negative sign for this term since a better connected network offers112

more alternative routes between any two destinations and should decrease traffic congestion. For113

intuition on the connectivity of road networks, consider Figure 1. This figure provides an example114

of the road network of two different counties in Virginia. On the top is Arlington County, an115

example of a relatively dense, well-connected road network. On the bottom is Charles City County,116

an example of a relatively sparse network with fewer alternate routes available to drivers.117

Building upon the fundamental law of road congestion, we have to consider the impact of the118

structure of the road network on driving. The fundamental law of road congestion asserts that an119

increase in lane miles - no matter where in the network they occur - leads to an equiproportional120

increase in V MTi,t . However, the fundamental law of road congestion is based on adding lane miles121

to existing roads, and is not likely an accurate descriptor of adding lane miles to a road network122

in the form of new roads which alter the topology of the road network. Adding lane miles in123

the form of new roads can lead to better connected road networks which could potential decrease124

the level of congestion experienced in a given road network. And even if the fundamental law of125

road congestion does hold in the sense that the level of congestion remains constant, another very126

important consideration is the opportunity cost of driving. By improving the connectivity of a road127

network, even conditional on the same level of congestion, the time of a given trip will not increase,128

and in some cases it will actually decrease.129

Thus given Equation 5, we can examine how VMT changes when the road network changes by130

examining the partial derivative as shown in Equation 9. V MTi,t is a function of the structure of the131
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Figure 1: An example of the road network of two different counties in Virginia. On the top is
Arlington County, an example of a relatively dense, well-connected road network. On the bottom is
Charles City County, an example of a relatively sparse network with fewer alternate routes available
to drivers.
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road network via both congestion (Ci) and opportunity cost (θi,t).132

∂V MTi,t

∂Ni
=

(
∂V MTi,t

∂Ci
· ∂Ci

∂Ni

)
+

(
∂V MTi,t

∂θi,t
·

∂θi,t

∂Ni

)
(9)

If we continue to assume that larger values of Ni correspond to better connected networks, all133

individual partial derivatives are negative, hence the two terms added together are both positive and134

the overall sign of the partial derivative of vehicle miles travelled with respect to the structure of135

the road network is positive.136

Given this, we hypothesize that the impact of road network structure on pollution is as follows.137

In Equation 10 we estimate the impact of road networks on pollution flows.138

∂Ei,t

∂Ni
=V MTi,t

(
∂ρv,i,t

∂Ni

)
+ρv,i,t

(
∂V MTi,t

∂Ni

)
=V MTi,t

(
∂ρv,i,t

∂Ci
·

∂ρv,i,t

∂Ni

)
+ρv,i,t

((
∂V MTi,t

∂Ci
· ∂Ci

∂Ni

)
+

(
∂V MTi,t

∂θi,t
·

∂θi,t

∂Ni

)) (10)

Since we have a negative and a positive term added together, there is no clear prediction how139

an improvement in the structure of a road network ought to affect emission flows.140

In Equation 11 we turn our attention to pollution stocks rather than flows, and assuming that a141

change in the structure of the road network occurs at time τ , we have that142

∂Pi,T

∂Ni
=

(
∂Pi,T

∂ρv,i,t
·

∂ρv,i,t

∂Ni

)
+

(
∂Pi,T

∂V MTi,t
·

∂V MTi,t

∂Ni

)
=

(
∂Pi,T

∂ρv,i,t
·

∂ρv,i,t

∂Ci
· ∂Ci

∂Ni

)
+

(
∂Pi,T

∂V MTi,t
·
(

∂V MTi,t

∂Ci
· ∂Ci

∂Ni

)
+

(
∂V MTi,t

∂θi,t
·

∂θi,t

∂Ni

))
=

[
T

∑
t=τ

(1−δ )T−tV MTi,t

](
∂ρv,i,t

∂Ci
· ∂Ci

∂Ni

)

+

[
T

∑
t=τ

(1−δ )T−t
ρv,i,t

]((
∂V MTi,t

∂Ci
· ∂Ci

∂Ni

)
+

(
∂V MTi,t

∂θi,t
·

∂θi,t

∂Ni

))
(11)
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Again, given that there are both positive and negative effects, there is no clear theoretical pre-143

diction about the direction of the change.144

Thus, it is an empirical question about how these changes in road networks will affect pollution145

stocks and flows. To implement this empirically, the partial derivatives from Equations 10 and146

11 will be represented using a series of topological indices which each describe a specific aspect147

of the structure of the road network. By the nature of the specificity of these topological indices,148

some will be better descriptors of the connectivity of road networks, serving as a better measure149

of network effects on congestion, while others will be better descriptors of the opportunity cost150

of driving. A detailed discussion of the topological indices used in this paper, and of topological151

indices in general, is provided in Section 5.152

3 Traffic and Pollution153

3.1 Consequences of Vehicular Emissions154

As we saw in the previous section, road network structure is the crux of congestion externality155

related tradeoffs. Denser, better connected networks increase the efficiency (and thus decrease the156

pollution intensity) of traversing the network, thereby reducing emissions conditional on a fixed157

quantity of vehicle miles travelled. The potential to reduce pollution is critical for several economic158

reasons, reasons as diverse and expansive as health, productivity, migration, and property values.159

Knittel et al. (2016) used an IV approach to causally link pollution from driving to increased160

infant mortality, lower birth weights, and more premature births. Using the implementation of161

E-Zpass as a natural experiment, Currie and Walker (2011) found that decreased emissions due162

to decreased congestion at the toll plazas caused improved birth outcomes among mothers living163

near these toll plazas. Using superstition around the number four as a source of exogeneity and164

a license plate based driving ban in China, Zhong et al. (2017) also found a causal link between165
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driving and air pollution, but further found that policy can significantly impact driving habits and,166

consequentially, pollution from driving.167

Access to road network can also affect productivity. For instance, Shamdasani (2021) showed168

that in rural India, when farmers gained access to the road network, they were able to diversify their169

crop portfolios, growing higher return crops and improving their welfare. When access to the road170

network already exists, there are other means of increasing one’s welfare. For instance, in Italy,171

Germani et al. (2021) found that pollution levels, to which driving contributes heavily, influence172

migration to other regions of the country with less air pollution in an effort to improve on welfare173

through health gains.174

For those who remain stationary, traffic related pollution can affect property values as well.175

Using the fact that Iran began to produce more low grade gasoline as a consequence of sanctions,176

Amini et al. (2021) found that increases in air pollution led to decreases in house prices. Higgins177

et al. (2019) similarly found that increased pollution decreases house prices. They also found178

evidence of the tradeoff between location in the road network and pollution insofar as they found179

that while home owners value accessibility within road networks, the disamenity of air pollution180

can entirely offset gains from superior locations in the network.181

One particularly interesting finding regarding decisions on where to live and pollution from182

driving was by Sider et al. (2013) who showed that those who emit the most pollution from driving183

tend to live in areas with the highest air quality. This raises the question of equity, and also further184

signifies the importance of policies aimed at reducing emissions from driving. But what can be185

done?186

3.2 Relevant Policy Measures187

One simple mechanism for addressing emissions from driving is a fuel tax. Sipes and Mendelsohn188

(2001) found that driving is price inelastic as driving decreased only mildly in California when a tax189
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on gasoline was implemented. Building on this, Spiller et al. (2014) confirmed the price inelastic190

nature of driving, but found that part of this reduction in driving is due to increased use of public191

transit. The authors provide support for recycling fuel tax revenues into public transit to increase192

this effect. This result confirms a paper by Anderson (2014) which used strikes by public transit193

workers to find that public transit substantially decreases traffic congestion, with delays increasing194

by as much as 47% while public transit services were unavailable. In addition to increased use of195

public transit, Bento et al. (2013) showed that fuel taxes also lead to increased carpooling. Inspired196

by the success of fuel taxes, Montag (2015) argues in favor of fuel taxes, but points out that fuel197

taxes need not be used in isolation and can instead be the basis of a more complete policy approach198

to reducing emissions from driving.199

One potential complement for fuel taxes is to subsidize the purchasing of electric vehicles.200

However, as Holland et al. (2016) showed, subsidies can very quickly become too large and ul-201

timately lead to deadweight loss. Compounding on this inefficiency is an equity issue. Electric202

vehicles do not emit pollution while they are being driven, but the electricity generated to power203

the vehicle does emit pollution. Since this pollution occurs elsewhere, a clear equity issue arises.204

Another downside of this approach is that it does not address congestion, and could potentially205

increase congestion due to the purchasing of additional/secondary vehicles.206

Another potential complement to fuel taxes is congestion pricing. Congestion pricing has well207

founded theoretical support, e.g., (Arnott, 2013). But the evidence for congestion pricing does not208

end there. Tang (2021) found that the London Congestion Charge, which charged a fee to any driver209

entering the charge zone, significantly decreased traffic in the charge zone. With decreased traffic210

comes decreased pollution, but, per the authors’ findings, a corresponding increase in property211

values due to the decreased traffic based congestion externalities.212

Perhaps the most drastic means of reducing traffic is to preclude certain vehicles or drivers213

from driving altogether by implementing traffic bans. The aforementioned paper by Zhong et al.214

(2017) was an example of a study of a traffic ban. Han et al. (2020) similarly studied a traffic215
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ban in China and found that it decreased pollution from driving and, consequentially, decreased216

mortality rates, most notably among older women. For a traffic ban implemented in Chile, Rivera217

(2021) implemented a fuzzy regression discontinuity design and found that the ban was successful218

in decreasing both traffic and pollution. Davis (2008) studied a license plate based traffic ban in219

Mexico City, but found a null result, i.e., the traffic ban did not reduce pollution levels in the city.220

In fact, drivers responded by increasing the number of vehicles used since an additional vehicle is221

one means of being able to drive on days when one’s primary vehicle would not be permitted on the222

roads. Heading yet further in the wrong direction, Zhang et al. (2017) developed and empirically223

tested a theoretical model which showed that, in certain scenarios, license plate based traffic bans224

can actually increase emissions from driving. While increased driving and emissions is certainly a225

case of an unintended policy consequence, another example uncovered by Carrillo et al. (2018) is226

an increase in crime. By using the discontinuity of the border of the geographical area cover by the227

traffic ban, they found that crime increased substantially.228

Given the price inelasticity of gasoline, the inefficiencies that can arise from subsidizing electric229

vehicles, and the potential for traffic bans to fail because they incentivize additional vehicle pur-230

chases, not to mention the series of equity issues that arise from many of these policy options, what231

else can be done? One remaining option which has yet to be explored in the literature is to optimize232

the structure of road networks. While many urban land use and transportation models do exist, e.g.,233

(Ahmed et al., 2022), these models do not directly consider the structure and connectivity of the234

road network.235

The key requirement for the structure of road networks to affect pollution lies in the fact that the236

structure of road networks also affects the behavior of drivers. Daniel et al. (2009) created a model237

to study optimal driver behavior in road networks with known bottlenecks which cause excessive238

traffic congestion, demonstrating that changes to the structure of the network can indeed affect the239

behavior of drivers. Simulations performed by Tsekeris and Geroliminis (2013) supported having240

a larger, denser, mixed-use urban core which has optimized the proportion of land allocated to241
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transportation, as this structure should reduce traffic congestion.242

While not all cities can benefit from this approach, it certainly would seem to have potential243

in at least some situations, particularly, whenever a city is expected to experience rapid growth.244

Consider the case of a new, massive production facility or warehouse being built just outside of245

a small city. That city can expect substantial growth, and may even be required to immediately246

expand certain traffic related infrastructure as part of a bid to host this new facility. Planning how247

the city expands, as this paper will eventually show, has the potential to profoundly affect the248

contribution to pollution levels caused by traffic. Optimizing the structure of the road network is a249

critical component to experiencing lower levels of air pollution and a reduction in the disamenities250

caused by air pollution.251

4 Methodology252

4.1 Pollution Stocks253

First we consider the impact of road network structure on pollution stocks based on Equation 11.254

Since myriad factors affect the pollution stock of a given municipality, e.g., the industrial compo-255

sition of the municipality, and since the structure of the road network can affect, in this case, the256

industrial composition of the municipality through transportation costs, it is clear that the structure257

of the road networks is endogenous. For the same reason, it is also clear that we must control for258

municipal level heterogeneity with municipal level fixed effects. However, the structure of the road259

network over relatively short time scales (and in the case of this study) does not change. This means260

that we need to include two time invariant datum for each municipality in our regressions, which,261

unfortunately, leads to a colinearity problem. To address this, a Hausman-Taylor instrumental vari-262

ables model is used.263

The Hausman-Taylor model is a two-stage IV model which relies on both fixed and random264
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effects to overcome the collinearity problem with the topological indices and the municipal level265

fixed effects (Hausman and Taylor, 1981). The first stage of the Hausman-Taylor IV model uses266

population density as an instrument to predict the topological index. Following standard practice, a267

correlation matrix supporting the validity of our instrument is shown in Table 1. The second stage268

of the model is specified as follows where yp
i,t denotes the stock of pollutant p in municipality i on269

day t, Ni denotes the road network for municipality i, f̂τ(Ni) denotes the (instrumented) topological270

index τ of the road network Ni, the matrix Xi,t contains the time varying controls (weather data), γi271

is a municipality level fixed effect, ωw(t) is a week of year fixed effect, δd(t) is a day of week fixed272

effect, and ε
p
i,t is the residual.273

yp
i,t = θ f̂τ(Ni)+βXi,t + γi +ωw(t)+δd(t)+ ε

p
i,t (12)

The parameter of interest in this model is θ which tells us about the impact of road network274

structure on pollution stocks. In the stocks and flows model, θ fτ(Ni) comes from Equation 11.275

Per the motivating theory, the expected sign of theta is indeterminate, and in practice will depend276

upon which topological index we consider (recall Section 5). The magnitude of the effect of road277

network structure on pollution stocks, the parameter θ will not carry specific meaning given that278

topological indices are not exactly equivalent to the partial derivative from Equation 11 but merely279

an approximation of this. Thus, it will not be reasonable to interpret the magnitude of θ , only the280

sign and statistical significance.281

4.2 Pollution Flows282

In addition to considering pollution stocks, we also consider pollution flows. Since no papers283

to date consider the impact of road networks structure on pollution outcomes or use topological284

indices, it is highly important that results are robust in the sense that they are consistent for both285
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Table 1: A correlations matrix for the variables included in this study with stronger correlations
colored in deeper shades of red. As can be seen in the instrument Density correlates strongly with
the four topological indices.

pollution stocks and flows.286

To determine the impact of road network structure on pollution flows, a first differenced model287

of pollution stocks is used. The model is specified as follows where ∆yp
i,t denotes the change in the288

pollution stock of pollutant p in municipality i on day t, Ni denotes the road network for munici-289

pality i, f̂τ(Ni) denotes the (instrumented) topological index τ of the road network Ni, the matrix290

Xi,t contains the time varying controls (weather data), γi is a municipality level fixed effect, ωw(t)291

is a week of year fixed effect, δd(t) is a day of week fixed effect, and ε
p
i,t is the residual. The292

first differenced model still includes the municipal level fixed effect to account for local emissions293

from sources other than transportation, e.g., power plants. manufactories, etc. Because the mu-294

nicipal level fixed effect is included, a Hausman-Taylor approach is again used to estimate θ , the295

parameter of interest.296

∆yp
i,t = θ f̂τ(Ni)+βXi,t + γi +ωw(t)+δd(t)+ ε

p
i,t (13)
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5 Measuring the Structure of Road Networks297

Broadly speaking, a road network is a representation of the roads in a given geographical region298

and the way in which they interconnect, where vertices represent intersections and edges represent299

road segments (Marshall, 2016). Since directionality is critical for determining how users can ac-300

cess different regions of the network, and since information such as the physical distance between301

locations within the road network determine optimal, road networks can be more specifically repre-302

sented as weighted multi-digraphs (Boeing, 2017b). In fact, the default means of constructing road303

networks as mathematical objects in the current leading software (OSMnx) is to convert a two lane304

road segment into two separate road segments, directed opposite of one another (Boeing, 2017a).305

The rationale for this is that once on a road segment, a driver cannot simple turn around in the306

middle of the road and change direction.307

In order to help motivate our modelling of road networks, it is helpful to define a road network308

mathematically. Let N = N(V,E) be a road network where V is the set of vertices/intersection, and309

E is the set of edges/road segments. In network theoretic terms, for two intersections vi and v j in310

V (N) connected by a road segment allowing drivers to traverse from vi to v j, the edge e = viv j may311

be expressed more fully as the pair e = (viv j, I(e)) where I(e) represents the set of all additional312

information contained in the network data about the road segment represented by the edge e. Such313

data may include the length, the speed limit, the amount of traffic flow, or any other pertinent314

information about the road segment. To illustrate an example of a road network, consider the315

example of the road network of Hopewell, Virginia presented in Figure 2.316

Representing a road network in such a way is particularly useful as it allows us to use network317

theoretic tools to assess various structural aspects of the road network. For example, we can assess318

connectivity and how impacted drivers are when portions of the road network are closed due to dis-319

ruptions such as traffic accidents, road construction, or inclement weather (Jenelius and Mattsson,320

2015).321
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Figure 2: The road network of the city of Hopewell, Virginia. Edges in this network represent road
segments, while vertices represent intersections. In this representation, data on direction is encoded
into the edges and multiple edges between two vertices are stacked so that the visual representation
is as clean as possible.
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To do this, we need to condense each road network into a scalar which conveys some important322

fact about a given road network. Following (Sakakibara et al., 2004), this is done through the use323

of topological indices. Topological indices are used widely throughout applied network theory, in324

fields ranging from the study of transportation networks (Sakakibara et al., 2004), to the study of325

social networks Qi et al. (2017), to computational chemistry (Prabhu et al., 2020). In the case of326

Sakakibara et al. (2004), topological indices were used to help study the vulnerability of different327

cities in the Hanshin region of Japan to a possible earthquake by measuring how isolated within the328

network each city in the region is.329

An individual topological index will provide information on a single aspect of the network.330

While there are numerous topological indices, not all are relevant or applicable to road networks.331

In this paper, only topological indices with clear economic interpretations in the context of road332

networks will be considered.333

The first topological index presented is the mean edge betweenness centrality. Edge between-334

ness centrality has been used to identify critical road segments in terms of traffic flow and vulnera-335

bility to risks such as flooding (Casali and Heinimann, 2019; Tachaudomdach et al., 2021). In the336

context of a road network, edge betweenness centrality measures how critical each road segment337

is to traversing through the network in terms of the proportion of shortest paths between all pairs338

of vertices that pass through each road segment. Edge betweenness centrality assigns a value for339

to each road segment in the network. By considering the mean value over all road segments in340

a network, we obtain a measure of how important an average road is to efficiently traversing the341

network, i.e., how much travel disruption via detours would occur if an arbitrary road was closed342

somewhere in the network. The expression for the mean edge betweenness centrality of a network343

N is given by Equation 14 where σ(s, t) is the number of shortest paths from s to t, and σ(s, t|e) is344

the number of shortest paths from s to t which contain e. It is easy to see that this value is bounded345

between zero and one (note that it is just an average proportion).346
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MEBC(N) =
1
|E| ∑

e∈E
∑

s,t∈V

σ(s, t|e)
σ(s, t)

(14)

To help improve intuition for edge betweenness centrality, consider Figure 3 which shows the347

road networks of Hopewell, Virginia and Fairfax County, Virginia where each road segment is348

colored according to its edge betweenness centrality. Brighter yellows represent the road segments349

with the greatest edge betweenness centrality and darker purples represent the road segments with350

the lowest edge betweenness centrality. In the case of Hopewell, the roads near the center of the351

city prove to be the most critical for efficiently traversing the road network. Notice that in the very352

center of the city, however, there is a portion of the network that is relatively less connected and,353

consequentially, less critical for efficiently traversing the road network. In the case of the much354

larger road network of Fairfax County, the bright yellow streaks are Interstate 66, Interstate 95, and355

the Capital Beltway.356

Since the goal is to determine the impact of road structure on ambient pollution levels, it is im-357

portant to know how to interpret estimated regression coefficients for each topological index. In this358

case, road networks with a larger mean edge betweenness centrality should have a greater degree359

of disruption to the flow of traffic whenever some critical road segment is closed. Intuitively, this360

can be viewed as a measure of bottlenecks within a road network; a road network with a greater361

mean edge betweenness centrality is more likely to suffer from more bottlenecks. In particular,362

these bottlenecks are a result of the inefficiencies of re-routing leading to long detours. This is363

because smaller values of edge betweenness centrality are assigned to road segments that lie on rel-364

atively few shortest paths between destinations while larger values of edge betweenness centrality365

are assigned to roads that lie on a large proportion of shortest paths between destinations. When366

many alternative routes exists (lower mean edge betweenness centrality), the likelihood of a spe-367

cific road segment lying on a shortest path between a specific pair of locations in the road network368

is lower than when relatively few alternative routes exist. This is verified below in Figure 4 which369
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Figure 3: This figure shows the road networks for Hopewell, VA (top) and Fairfax County, VA
(bottom). Road segments are colored according to their edge betweenness centrality - brighter
yellows indicate road segments with the greatest edge betweenness centrality while darker purples
indicate road segments with the lowest edge betweenness centrality.
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shows four road networks; the top two road networks have relatively small mean edge betweenness370

centralities while the two bottom road networks have relatively large mean edge betweenness cen-371

tralities. It is easy to spot bottlenecks and the potential for long detours due to road closures in the372

two road networks on the bottom (with relatively large mean edge betweenness centralities).373

Another key topological index that measures the vertex/intersection analog of edge between374

centrality is called load centrality. Load centrality has been used to identify key intersections in375

transportation networks whose closure would significantly disrupt transportation flows, increasing376

transportation costs and times (Liu et al., 2019). Mean load centrality considers the average im-377

pact to travel across the network due to the closure of an intersection (and thus all incident road378

segments). The formula for mean load centrality is analogous to that of mean edge betweenness379

centrality. Mean load centrality, defined in Equation 15, is included in this discussion for two rea-380

sons. First, the use of both provides intuition into the difference in consequences between closing a381

road segment versus closing an intersection - namely that all incident road segments are effectively382

closed as well in the latter case (at least to through traffic). Second, we should expect similar results383

for these two topological indices in our analyses.384

MLC(N) =
1
|V | ∑

v∈V
∑

s6=v6=t∈V

σ(s, t|v)
σ(s, t)

(15)

As an alternative measure of the connectivity of a road network which we use in our analysis,385

designed specifically to look at the likelihood of additional routes being available to a driver, is386

the percentage of three-way intersections. Since most intersections are either three or four-way387

intersections, three-way intersections come at the expense of four-way intersections, and so an388

increase in the proportion of three-way intersections implies a decreased presence of alternative389

routes available at intersections throughout the road network.390

Finally, we consider circuity, which is a measure of the amount of excess driving required to391

traverse a given route in the network. Circuity is defined as the ratio of the distances between392
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Figure 4: The top two municipalities (Fauquier County and Loudoun County, from left to right)
are two municipalities with edge betweenness centralities below both the mean and median in the
sample. These two counties offer many alternative routes and it is easy to see that the size of a
detour created by a specific road closure will only ever be but so large. The bottom two municipal-
ities (Fredericksburg (city) and Roanoke County, from left to right) are two of the municipalities
with the largest mean edge betweenness centralities (each is greater than both the sample mean and
median). It is easy to spot bottlenecks and the potential for long detours due to road closures in
these two municipalities.
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locations in the network and the Euclidean distance between those same locations. Road networks393

with higher values for circuity require longer trips on average, thereby increasing the opportunity394

cost of driving. Formally, circuity is defined in Equation 16 where dN(u,v) denotes the minimum395

travel distance through network N between locations u and v, and dE(u,v) denotes the Euclidean396

distance between those same two locations.397

Circuity(N) =

∑
u,v⊆V (N)

dN(u,v)

∑
u,v⊆V (N)

dE(u,v)
(16)

Interested readers can find detailed figures of the road networks studied in this paper in Appen-398

dices A and B.399

6 Data400

6.1 Pollution Data401

To measure the impact of road network structure on pollution, we use pollution data on the Com-402

monwealth of Virginia from the EPA Air Quality System. Specifically, the pollutant considered403

in this study is particulate matter (PM2.5). This pollutant was chosen since gasoline, diesel, and404

electric cars all produce PM2.5 when in use. Due to the fact that EPA monitoring stations typi-405

cally do not record data for all pollutants, the EPA data limits the geographical scope of this paper.406

The Commonwealth of Virginia was chosen because it offers consistent transportation policies407

(opposed to a multi-state study) and because Virginia offers diverse municipality types (cities are408

independent of counties in Virginia) and thus diverse road network structures, all existing within a409

relatively confined geographical area. Using EPA sites in Virginia which record pollution data of410

interest during the time frame of this study leaves us with 38 different cities and counties for which411

there is sufficient pollution data. All observations on each day during the time period covered in412
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this paper (January 1 to December 31, 2020) from every site in each municipality are averaged to413

create mean county level pollution data for each day that data was available.414

6.2 Road Networks415

The key variables of interest in this paper are a series of topological indices describing various416

structural aspects of municipal road networks as described above. To compute these topological417

indices, road networks were obtained from OpenStreetMap (OSM) using the OSMnx module in418

Python (Boeing, 2017a). As road networks are multi-digraphs, this means that every road segment419

is directed from one intersection to another; recall that in the case of a two-way street, each road420

segment is represented as two distinct segments oriented in opposite directions.421

Using this definition of a road network, we can represent a road network N as a |V |×|V | matrix422

A(N), called the adjacency matrix of the road network, where the ith row and the ith column denote423

intersection i and where the element Ai j indicates whether or not a road segment exists from inter-424

section i to intersection j with either a one (the road segment exists) or a zero (the road segment425

does not exist). Each topological index is then computed using the adjacency matrix A(N) for each426

municipal road network.427

6.3 Weather Data428

Since weather affects pollution levels, and since weather data varies over time, data for several429

pertinent weather variables from NOAA are included. The weather variables include temperature,430

wind speed, and precipitation. Observations of weather data are at the municipality-day level.431
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Table 2: Summary statistics for pollution levels and the topological indices.

7 Results and Discussion432

7.1 Pollution Stocks433

We begin with the results for pollution stocks. Estimates of θ for each pollutant-topological index434

combination can be found in Table 3.435

The first topological index we use is mean edge betweenness centrality, a measure of how436

important road segments are to efficiently traversing the road network. Assuming that the mean437

edge betweenness centrality of a road network is a good descriptor of network connectivity (which438

is the intention behind choosing this topological index), the expected sign of θ is positive. We find439

a positive and statistically significant result for mean edge betweenness centrality, indicating that440

more bottlenecks in road networks leads to higher levels of pollution, potentially through increased441

congestion. Conditional on this topological index being a good descriptor of the opportunity cost of442

driving, this result conforms with theoretical expectations. In other words, road networks in which443

roads are more likely to have bottlenecks at critical junctures for efficiently traversing the network444
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are less efficiently designed and contribute to higher pollution levels.445

Mean load centrality, a vertex analog of edge betweenness centrality, has very similar results to446

mean edge betweenness centrality. The sign of θ is positive and statistically significant which is not447

surprising since all we have done is change our focus from the importance of road segments to the448

importance of intersections for efficiently traversing the road network. The consistency between449

the edge and vertex based notions of centrality provides credibility to the use of these topological450

indices as a measure of the structure of municipal road networks.451

Similar to the first two topological indices, the percentage of three-way intersections in the452

network was chosen with the expectation that it is a better predictor of network connectivity than453

the opportunity cost of driving. This result again confirms the model, as we have a positive and454

statistically significant estimate.455

The final topological index is the circuity of the network. Circuity was chosen as a viable456

candidate as a good descriptor of the opportunity cost of driving. Given this, we should expect a457

negative value for θ , and this is precisely what we find. Drivers are likely driving less in more458

circuitous networks due to the higher opportunity cost of driving, thereby leading to lower levels459

of pollution stocks.460

Altogether, these results indicate two key takeaways. First, relevant topological indices can be461

used as reliable measures of the structure of a road network. Second, we have established sound462

evidence that the structure of municipal road networks has an effect on ambient pollution levels.463
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Table 3: Estimated values of θ for each pollutant-topological index pair from the Hausman-Taylor
model for the impact of road network structure on pollution stocks. ∗∗∗ denotes statistical signif-
icance at the 1% level, ∗∗ denotes statistical significance at the 5% level, and ∗ denotes statistical
significance at the 10% level. There are N = 2,915 observations included in the regressions. Robust
standard errors are provided in parentheses.

Fine Particulate Matter
Mean Edge Betweenness Centrality 303.776∗∗

(150.425)
Mean Load Centrality 120.496∗∗

(59.668)
Percentage of 3-Way Intersections 12.421∗∗

(6.151)
Circuity -14.425∗∗

(7.143)
Temperature 0.012 0.012 0.012 0.012

(0.012) (0.012) (0.012) (0.012)
Precipitation -0.611∗∗∗ -0.611∗∗∗ -0.611∗∗∗ -0.611∗∗∗

(0.101) (0.101) (0.101) (0.101)
Wind Speed -0.130∗∗∗ -0.130∗∗∗ -0.130∗∗∗ -0.130∗∗∗

(0.018) (0.018) (0.018) (0.018)

7.2 Pollution Flows464

Next we turn our attention to pollution flows. Our theoretical framework suggests that we should465

expect to see the same signs for θ in these models that we expected to see in the case of pollution466

stocks. Results are presented in Table 4.467

In these results, for our three measures of congestion, mean edge betweenness centrality mean468

load centrality, and the percentage of three-way intersections, we continue to get positive and statis-469

tically significant results in terms of increased pollution. This consistency further validates the use470

of topological indices, the model, and the plausibility of increased congestion from less robustly471

connected road networks leading to higher levels of pollution stocks.472

Unlike in the results for pollution stocks, the estimate for circuity is positive and statistically473

significant. However, the opposite signs do not necessarily represent a contradiction. In fact, a474

strong economic argument can be made that this coefficient should be positive for pollution flows.475

The negative estimate found in the pollution stocks regression indicates that drivers have reached476
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a lower equilibrium level of driving in municipalities with more circuitous road networks. But in477

the short run commitments are much less flexible and the opportunity cost of driving may be much478

lower. Thus, in the short run, driving more circuitous routes between locations in the road network479

could increase vehicle miles travelled since traversing these routes requires more driving, not less.480

Table 4: Estimated values of θ for each pollutant-topological index pair from the Hausman-Taylor
model for the impact of road network structure on pollution flows. ∗∗∗ denotes statistical signifi-
cance at the 1% level, ∗∗ denotes statistical significance at the 5% level, and ∗ denotes statistical
significance at the 10% level. There are N = 1,789 observations included in the regressions. Robust
standard errors are provided in parentheses.

Fine Particulate Matter
Mean Edge Betweenness Centrality 51.593∗∗

(25.979)
Mean Load Centrality 23.310∗∗

(11.738)
Percentage of 3-Way Intersections 70.435∗∗

(35.467)
Circuity 5.289∗∗

(2.663)
Temperature -0.080∗∗∗ -0.080∗∗∗ -0.080∗∗∗ -0.080∗∗∗

(0.0117 (0.017) (0.017) (0.017)
Precipitation -0.654∗∗∗ -0.654∗∗∗ -0.654∗∗∗ -0.654∗∗∗

(0.170) (0.170) (0.170) (0.170)
Wind Speed -0.121∗∗∗ -0.121∗∗∗ -0.121∗∗∗ -0.121∗∗∗

(0.027) (0.027) (0.027) (0.027)

8 Mechanism Validation481

In the previous section, it was shown that the structure of a road network has an impact on pollution482

stocks and flows, and the nature of this relationship was described for each of the four topological483

indices considered in this paper. However, these results were interpreted within the context of an484

assumed framework. In this section we validate our four topological indices, showing that they are485

indeed satisfactory measures of either congestion or of the opportunity cost of driving.486

To do this, we regress a measure of congestion and a measure of average commute times against487
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Table 5: Summary statistics for the topological indices, mechanisms, and controls for the cross
section of metro areas used in this section.

each of the topological indices. We use data from 51 major US metropolitan areas to construct our488

measures of congestion and of the opportunity cost of driving. Data from the Bureau of Transporta-489

tion Statistics is used to construct a measure of congestion using the ratio of drive times during peak490

traffic to drive times during free flow traffic; and data from the US Census Bureau provides mean491

commute times, a measure of the opportunity cost of driving. Once again we construct road net-492

works using OSMnx. In these regressions, we also control for other factors that are related to both493

network structure and congestion or the opportunity cost of driving, including population, the per494

capita annual number of public transit rides, and an indicator for whether or not each metro area is a495

state capital, using data from the Federal Transit Administration’s National Transit Database. Den-496

sity, as a measure of urban form, is again used as an instrument. The IV regressions are specified497

as shown in Equation 17. Summary statistics for the data can be found in Table 5.498

ym
i = θ fτ(Ni)+βX + ε

m
i (17)

As shown in Table 6, results from the mechanisms models confirm the assumptions made about499
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what the topological indices are describing. Both mean edge betweenness centrality and mean load500

centrality lead to larger congestion ratios. As these two topological indices are used to measure the501

presence of bottlenecks in road networks, and since bottlenecks should lead to more congestion,502

these results confirm that higher levels of mean edge betweenness centrality or mean load centrality503

cause higher levels of pollution through increased congestion.504

Turning our attention to the mean commute time models, we see that there is a positive and505

statistically significant effect attributable to circuity. Since circuity was intended to be a measure of506

the opportunity cost of driving, we can confirm that the lower levels of pollution stocks observed507

in municipalities with more circuitous road networks can be explained by less driving occurring as508

a consequence of greater commute times. Similarly, the higher levels of pollution flows observed509

in municipalities with more circuitous road networks can be explained by drivers having fixed510

commitments in the short run, commitments which require greater time spent driving and thus511

higher levels of vehicular emissions.512

Table 6: Estimated values of θ for each mechanism-topological index pair from the IV model for
the impact of road network structure on pollution inducing mechanisms. ∗∗∗ denotes statistical sig-
nificance at the 1% level, ∗∗ denotes statistical significance at the 5% level, and ∗ denotes statistical
significance at the 10% level. There are N = 51 observations in each cross section. Robust standard
errors are provided in parentheses.

Congestion Ratio ln(Mean Commute Time)
Mean Edge Betweenness Centrality 29.017∗∗∗ -74.879

(5.919) (67.074)
Mean Load Centrality 8.717∗∗∗ -31.823

(3.097) (28.812)
Circuity -0.842 3.265∗

(0.557) (1.888)
Capital -0.004 -0.002 0.011∗∗∗ 0.057∗∗∗ 0.059∗∗∗ 0.011

(0.004) (0.005) (0.003) (0.014) (0.017) (0.016)
ln(Public Transit) 0.004 0.005 0.003 0.063∗∗∗ 0.065∗∗∗ 0.076∗∗∗

(0.017) (0.015) (0.013) (0.003) (0.005) (0.012)
ln(Population) 0.033∗∗∗ 0.030∗∗∗ 0.018∗∗∗ 0.053∗ 0.049∗ 0.093∗∗∗

(0.010) (0.010) (0.003) (0.027) (0.028) (0.002)
Constant 0.547∗∗∗ 0.596∗∗∗ 1.694∗∗∗ 2.423∗∗∗ 2.494∗∗∗ -1.720

(0.108) (0.111) (0.580) (0.512) (0.544) (2.045)
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9 Conclusion513

Transportation is among the leading causes of air pollution. The structure of road networks affects514

transportation patterns and thus levels and flows of air pollution. Assuming the fundamental law of515

road congestion, a simple theoretical framework of the contribution of transportation to air pollution516

stocks and flows was used to make predictions about the indirect effect of the structure of road517

networks on air pollution stocks and flows.518

Several topological indices were used to describe the structure of municipal road networks and519

to measure congestion and the opportunity cost of driving. Using these topological indices with520

Hausman-Taylor IV models and measures of urban form as an instrument, we found that road521

network structure does indeed affect air pollution stocks and flows in a way which conforms to our522

theoretically derived hypotheses.523

To confirm that the topological indices used were good proxies for congestion and the opportu-524

nity cost of driving, we also regressed measures of congestion and the opportunity cost of driving525

against the topological indices over a cross section of 51 of the largest metro areas in the United526

States. Results from these regressions further confirmed that the topological indices are valid mea-527

sures for what they were used to measure, specifically that they were valid measures of congestion528

and of the opportunity cost of driving.529

The paper makes important contributions to the literature on pollution and traffic patterns, sug-530

gesting that reducing congestion and improving the efficiency of road networks can help reduce531

pollution, at least in the context of the United States. It also suggests that the fundamental law532

of road congestion is not a general principle, i.e., the fundamental law of road congestion does533

not necessarily hold when additional highway lane miles are built in the form of new roads which534

increase the connectivity of the road network.535

The most important policy implications are two-fold. The first applies to new or rapidly expand-536

ing urban(izing) areas in North America. Consider the case of a small city or even a rural/suburban537
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area gaining a massive distribution center for some large company. Rapid expansion of this munic-538

ipality is likely to ensue. Policymakers can reduce the impacts of the traffic thus minimizing the539

pollution impacts by designing road networks that allow for more efficient traversal and have fewer540

potential bottlenecks that lead to increased congestion.541

An extension of this applies to cities which straddle rivers which could benefit from the con-542

struction of additional bridges which connect the distinct sides of the city. In these cities, when543

ever a single bridge is closed, the spillover effects would ripple across large portions of the city,544

increasing congestion. Conversely, the construction of an additional bridge could have spillover545

effects which decrease congestion throughout nearby portions of the city. However, as observed in546

our results, this congestion effect could potentially be outweighed by the corresponding change in547

the opportunity cost of driving arising from a better connected road network.548

A second major policy implication of this research pertains to the design of cities overall.549

Specifically, in order to reduce vehicular emissions in car-dominated cities, road networks should550

be designed in a manner which reduces bottlenecks. This means that, in direct contradiction of551

the fundamental law of road congestion, additional highway lane miles can potentially be used to552

reduce congestion - the key here is that these additional lane miles must be created in a manner553

which increases the connectivity of the road network, i.e., additional lanes miles must be created in554

a manner which eliminates bottlenecks. If this is successfully done then increased lane miles could555

very well lead to reduced congestion and, by extension, pollution.556
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A Virginia Municipality Road Networks655

This appendix contains two figures for each road network for the Virginia municipalities. The first656

figure shows the road network with road segments colored according to their edge betweenness cen-657

trality; brighter colored road segments are relatively more critical for efficiently traversing a road658

network. The second figure shows the road network with vertices used to denote the intersections.659
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B Large Metro Area Road Networks736

This appendix contains two figures for each road network for the 51 large US metro areas. The first737

figure shows the road network with road segments colored according to their edge betweenness cen-738

trality; brighter colored road segments are relatively more critical for efficiently traversing a road739

network. The second figure shows the road network with vertices used to denote the intersections.740
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